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ABSTRACT
We discuss type classes in the context of the Chameleon
language, a Haskell-style language where overloading reso-
lution is expressed in terms of the meta-language of Con-
straint Handling Rules (CHRs). In a first step, we show
how to encode Haskell’s single-parameter type classes into
Chameleon. The encoding works by providing an approrpri-
ate set of CHRs which mimic the Haskell conditions. We also
consider constructor classes, multi-parameter type classes
and functional dependencies. Chameleon provides a test-
bed to experiment with new overloading features. We show
how some novel features such as universal quantification in
context can naturally be expressed in Chameleon.

1. INTRODUCTION
Type classes [14, 23] are one of the most prominent fea-

tures of Haskell [18]. They are also found in other languages
such as Mercury [6, 9] , HAL [3] and Clean [19]. In partic-
ular Haskell has become the most popular playing field for
type class acrobats. Advanced features such as construc-
tor [11], multi-parameter [13] classes and functional depen-
dencies [12] are found in most Haskell implementations.

The idea behind type classes is to allow the programmer
to define relations over types. For single–parameter type
classes, the type class relation simply states set membership.
Consider the Eq type class, the declaration

class Eq a where (==) :: a -> a -> Bool

states that every type a in type class Eq has an equality
function ==. Instance declarations “prove” that a type is in
the class, by providing appropriate functions for the class
methods. For example, Int is in Eq:

instance Eq Int where (==) = primIntEq

which states that the equality function for Ints is primIntEq
where primIntEq is a built-in primitive function on integers.
The == function can only be used on values with types that
are in Eq. This is reflected by the function’s constrained
type:
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(==) :: Eq a => a -> a -> Bool

which has a constraint component Eq a and a type compo-
nent a -> a -> Bool.

Constructor classes [11] allow the programmer to define
relations not just over types but also over type constructors.
A typical example is the Functor class:

class Functor f where

fmap :: (a -> b) -> (f a -> f b)

where the class parameter f ranges over type constructors
such as [] and Tree.

Multi–parameter type classes [13] allow for multiple class
parameters. For example,

class Collects ce e where

empty :: ce

insert :: ce -> e -> ce

The Collects class defines a relation between element types
e and the type ce of the collection itself. Unfortunately, this
example has problems; we can’t determine which instance
declaration to use for empty because its type (ce) won’t allow
us to deduce an element type e. Therefore, empty is con-
sidered ambiguous. This can be resolved by adding another
feature, functional dependencies [12] to retain unambiguity.
The functional dependency ce e states that for all instance
declarations of Collects the element type can be uniquely
determined from the collection type. In this case empty is
unambiguous.

Further type class proposals can be found in [2, 8]. This is
not an exhaustive list, we observe that there are many pos-
sibilities for additional features. For example, we might like
to say that the Integral and Fractional type classes are
disjoint (since we know a number can’t be both). This can’t
be expressed in any current type class system and hence the
function

f x y = x / y + x ‘div‘ y

has an inferred type of f :: (Integral a, Fractional

a) => a -> a -> a rather than immediately causing a type
error. As another example consider the following class dec-
laration

class (forall a . (Eq a => Eq (s a))) => Sequence s

Our intention is to state that for any instance type S of
the Sequence class there must be an instance for Eq (S T)

whenever there is an instance Eq T for some type T. To our
knowledge such a property can’t be expressed by any type
class system to date.
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Stuckey and Sulzmann introduce in [21] a general over-
loading framework based on Constraint Handling Rules (CHRs).
Essential algorithms such as type inference and unambigu-
ity checks can be performed by running the underlying CHR
evaluation engine. The system is user-programmable in the
sense that the user is able to state additional properties via
CHRs. That is, CHRs serve as a meta-language to impose
conditions on the set of constraints allowed to appear.

In this paper, we make more explicit the connection be-
tween the form of overloading provided by the CHR-based
system and type classes as found in Haskell. The ideas of
the CHR-based overloading system have been incorporated
into the Chameleon [22] language. The Chameleon syn-
tax mostly follows Haskell syntax. Overloaded identifiers
are defined using the overload keyword which is similar to
instance in Haskell. However, no class declarations are nec-
essary. The user can design her own system by providing
CHRs via the rule keyword. For example, the functional
dependency declaration class Collects ce e | ce e can
be specified as follows:

rule Collects ce e, Collects ce e’ ==> e = e’

We can prevent types from being a member of the Integral

and Fractional types class by the following CHR:

rule Integral a, Fractional a ==> False

The class declaration from before containing a universal
quantifier can be expressed as follows:

rule Sequence s, Eq a ==> Eq (s a)

We continue in Section 2 by giving an overview of the
Chameleon language. In Section 3 we show how to en-
code Haskell’s type classes in Chameleon. The encoding
is faithful, i.e. if the Haskell 98 program is typable then so
will be the respective Chameleon program, with the same
type. Section 4 considers more sophisticated type class fea-
tures such as an alternative treatment of constructor classes
and universal quantification in contexts. We conclude in
Section 7 More details on Chameleon can be found under
http://www.cs.mu.oz.au/~sulzmann/chameleon

2. CHAMELEON
A Chameleon program consists of a set of data types and

(possibly overloaded) function definitions. Furthermore, we
find user-definable CHR rules. Currently, we restrict all defi-
nitions to the top-level of the program, i.e. nested definitions
are not permitted.

Example 1. Here is an example Chameleon program:

data Nat = Zero | Succ Nat

leqNat Zero Zero = True

leqNat Zero (Succ n) = False

leqNat (Succ n) Zero = False

leqNat (Succ n1) (Succ n2) = leqNat n1 n2

overload leq :: Nat->Nat->Bool

leq = leqNat

insList :: Leq (a->a->Bool) => [a]->a->[a]

insList [] y = [y]

insList (x:xs) y = if leq x y then x:(insList xs y)

else x:y:ys

overload insert :: Leq (a->a->Bool) => [a]->a->[a]

insert = insList

rule Leq a ==> a = b->b->Bool

rule Insert a ==> a = ce->e->ce

rule Insert (ce->e->ce),

Insert (ce->e’->ce) ==> e = e’

rule Insert ([a]->b->[a]) ==> a = b

Roughly speaking, an overloaded definition in Chameleon
corresponds to an instance for an implicit type class in Haskell.
For each overloaded identifier we introduce a predicate sym-
bol. For example, the overloaded identifier insert intro-
duces the unary predicate symbol Insert. We can refer
to such predicates in type signatures and rule definitions.
Note that predicates in Chameleon are mostly of the form
P (t1->...->tn->t). Assuming that P corresponds to an
overloaded identifier p, then P (t1->...->tn->t) indicates
a possible invocation of p on argument types t1,...,tn and
result type t. Each overloaded definitions must be anno-
tated with a valid type signature. Type annotations are
optional for regular function definitions.

For convenience, Chameleon also provides a constraint ab-
breviation mechanism similar to type synonyms in Haskell.
For example, the statement

constraint Collects (ce,e) =

Empty ce, Insert (ce->e->ce)

introduces Collects (ce,e) as an abbreviation for the pred-
icate set on the right-hand side of =.1 Constraint synonyms
are expanded statically and can be referred to in type sig-
natures and user-definable CHR rules. They may not be
cyclic.

A user-definable CHR propagation rule is of the form

rule C ==> D

where C and D consist of a set of predicates. D may addition-
ally consist of equality constraints. We often use the term
“constraint” to refer either to a predicate, or an equality
constraint, or a set thereof. Assume C = c1, ...,cn and
D = d1,...,dm. Then, the logical meaning of such a CHR
is as follows:

[[c1, . . . , cn =⇒ d1, . . . , dm]]
=

∀ᾱ.(c1 ∧ · · · ∧ cn → (∃β̄.d1 ∧ · · · ∧ dm))

where ᾱ = fv(c1 ∧ · · · ∧ cn) and β̄ = fv(d1 ∧ · · · ∧ dm) − ᾱ.
We assume fv is a function returning the free variables in a
constraint. In Example 1, rule Leq a ==> a=b->b->Bool

enforces that leq arguments must be of the same type and
the result type is Bool. A similar condition is enforced by
rule Insert a ==> a=ce->e->ce. The CHR

rule Insert (ce->e->ce), Insert (ce->e’->ce)

==> e = e’

essentially states a functionally dependency, i.e. the first
input argument uniquely determines the second argument.
The CHR

1Note that, technically, Collects is a unary predicate. We
abuse tuples to simulate polyadic predicates.

2



rule Insert ([a]->b->[a]) ==> a = b

enforces the functional dependency for the particular over-
loaded definition

insert :: Leq (a->a->Bool) => [a]->a->[a]

We note that there is also another (implicit) kind of CHRs
which arises from the set of overloaded definitions. The two
overloaded definitions in Example 1 give rise to the following
two CHR simplification rules:

rule Leq (Nat->Nat->Bool) <==> True

rule Insert ([a]->a->[a]) <==> Leq (a->a->Bool)

Note that this set of CHRs will be automatically generated
from the set of overloaded definitions and cannot be written
by the user. The logical reading of simplification rules is sim-
ilar to the one for propagation rules, boolean implication is
simply replaced by boolean equivalence. We commonly refer
to the set of user-definable CHRs and the set of CHRs aris-
ing from overloaded definitions as the program theory. All
essential properties of Chameleon programs can be defined
in terms of the program theory.

Consider type inference for example. Out of the program
text we generate the appropriate constraints which are then
solved w.r.t. the program theory. The operational semantics
of CHRs is straightforward. We assume that constraints are
kept in a constraint store. CHRs define transitions from one
set of constraints to an equivalent set. Whenever there is a
matching copy of the left-hand side of a propagation (resp.
simplification) rule in the store, we propagate (simplify),
i.e. add (replace), the right-hand side. Type inference is
decidable if the CHRs are terminating, i.e. any constraint
set can be reduced in a finite number of steps such that
no further CHRs are applicable. For a detailed exposition
on type inference and related issues we refer to [21]. Here,
we give a short overview of some of the important criterias
which need to be satisfied by a Chameleon program.

2.1 Termination
The program theory must be terminating.

Example 2. Consider the following program fragment:

overload eq :: Eq ([a]->[a]->Bool) => a->a->Bool

eq x y = eq [x] [y]

The resulting CHR simplification rule would be

rule Eq (a->a->Bool) <==> Eq ([a]->[a]->Bool)

Immediately, we find that any program theory which con-
tains the above rule is non-terminating. E.g. Eq (t->t->Bool)

reduces to Eq ([t]->[t]->Bool) which in turn reduces to
Eq ([[t]]->[[t]]->Bool) and so on.

Example 3. Assume we find the following user-defined
propagation rule:

rule Leq (a->a->Bool) ==> Leq ([a]->[a]->Bool)

In a non-terminating sequence, a constraint Leq (t->t->Bool)

reduces to Leq (t->t->Bool), Leq ([t]->[t]->Bool), and
so on. Infinite application of a redundant propagation rule
is prevented by applying a particular rule only once to a set
of constraints.

Example 4. Consider

rule Leq (a->a->Bool) ==> Eq (a->a->Bool)

For example, Leq (t->t->Bool) reduces to Leq (t->t->Bool),

Eq (t->t->Bool) which is the final store. In essence, we
prohibit adding, i.e. propagating, redundant constraints.

Example 5. Consider the following two propagation rules:

rule X a ==> Y a

rule Y a ==> X a

There seems to be a cyclic dependency. However, X t re-
duces to X t, Y t, which is the final store. Application of
the second rule would only add a redundant constraint.

We have incorporated various checks for termination of
CHRs. See [22] for details. Clearly, each check is incom-
plete in the sense that there might be some CHRs which are
terminating, but for which our termination check signals
failure.

2.2 Confluence
Another important property of the program theory is con-

fluence. Confluence states that, starting from a set of con-
straints, the CHRs can be applied in any arbitrary order
and always leads to the same final constraint store.

Inconsistent Definitions
Example 6. Consider the following program fragment.

For simplicity, we leave out the function bodies.

overload leq :: Int->Int->Bool

leq = ...

rule Leq (a->a->Bool) ==> Eq (a->a->Bool)

The above CHR propagation rule states that every defini-
tion of leq on type a->a->Bool implies that there must be a
definition of eq on the same type. This is fairly similar to the
super-class relationship found in Haskell. Note that there is
a “missing instance”: the propagation rule enforces that a
definition of eq on type Int->Int->Bool must be present.
However, no such definition is in scope. In Chameleon such
inconsistencies among definitions can be detected by check-
ing whether program theories are confluent. Clearly, the
program theory in the above example is non-confluent.

Example 7. Consider

overload eq :: Eq (a->a->Bool) => Eq ([a]->[a]->Bool)

eq = ...

overload leq :: [a]->[a]->Bool

leq = ...

rule Leq (a->a->Bool) ==> Eq (a->a->Bool)

In Haskell terminology, we would say that the “instance
context” of leq on type [a]->[a]->Bool is “too general”.
Chameleon will complain about a non-confluent program
theory:

rule Eq ([a]->[a]->Bool) <==> Eq (a->a->Bool) -- 1

rule Leq ([a]->[a]->Bool) <==> True -- 2

rule Leq (a->a->Bool) ==> Eq (a->a->Bool) -- 3
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For example, the constraint Leq ([a]->[a]->Bool) can be
reduced to True via the second rule. However, there is an-
other possible CHR derivation for Leq ([a]->[a]->Bool).
We first apply the third rule, i.e. we propagate the constraint
Eq ([a]->[a]->Bool) which yields Leq ([a]->[a]->Bool),

Eq ([a]->[a]->Bool). Then, we apply the first rule which
leads to Leq ([a]->[a]->Bool), Eq (a->a->Bool). Finally,
we apply the second rule which leads to Eq (a->a->Bool).2

Obviously, Leq ([a]->[a]->Bool) has two different CHR
derivations. In the first case, the final constraint store con-
sists of True whereas in the second case we find Eq (a->a->Bool).
This shows that the program theory consisting of the three
rules above is not confluent. In Chameleon, a non-confluent
program theory indicates problems among the constraint re-
lations.Therefore, all program theories are checked for con-
fluence. There is no Haskell equivalent to the confluence con-
dition. In the Haskell 98 report (Section 4.3.2), the interplay
between classes and instances is formulated via three ad-hoc
conditions. We believe that confluence subsumes those con-
ditions.

Overlapping Definitions
Confluence becomes a subtle issue in case of overlapping
definitions.

Example 8. We add the following definition to the pro-
gram in Example 1:

overload insert :: [Nat]->Nat->[Nat]

insert = ... special version ...

Although the program theory is confluent, we have a prob-
lem in case we require a definition of function insert on
type [Nat]->Nat->[Nat]. We must take an indeterminis-
tic choice between two possibilities. In Chameleon, such
problems are avoided by simply ruling out overlapping def-
initions. More details on how to deal with overlapping defi-
nitions are discussed in [21].

Completion of CHRs
There are also cases where the program theory is non-confluent
but it is “safe” to add some CHRs to complete the program
theory. Consider Example 1 again. If we would leave out
rule Insert ([a]->b->[a]) ==> a=b the resulting program
theory would not be confluent. The CHR rule Insert

(ce->e->ce), Insert (ce->e’->ce) ==> e=e’ states a gen-
eral property which must hold for all definitions of insert.
For each particular definition, we have to add in an ad-
ditional propagation rule to complete the program theory.
Chameleon provides the user with the convenience to add in
such propagation rules automatically. The completion check
builds “critical pairs” among all propagation and simplifica-
tion rules. Confluence holds if all critical pairs are confluent.
Note that pairs of propagation rules always satisfy the con-
fluence condition. We also do not need to consider pairs of
simplification rules because we require that overloaded def-
initions must always be non-overlapping. Now consider a
pair of a propagation and a simplification rule, e.g.

rule U t, C1 ==> C2

rule U t’ <==> C3

where types t and t’ are unifiable. We build the most gen-
eral unifier φ of t and t’. It remains to check whether the

2We silently omitted True in the final constraint store.

critical pair consisting of the two constraints U φt, φC1,

φC2 and φC1, φC3 is confluent. Note that both constraints
are derived by applying each rule to U φt, φC1. Assume
that U φt, φC1, φC2 reduces to D1 and φC1, φC3 reduces
to D2 such that D1 and D2 are not equivalent, i.e. conflu-
ence is violated. In case none of the constraints entails the
other we immediately report failure. Otherwise, assume D1

entails D2. If the user-defined constraints UD1 in D1 are a
subset of the user-defined constraints UD2 in D2 we add in a
new propagation rule rule UD2 ==> ED1 where ED1 are all
equality constraints in D1. Otherwise, we report failure.

Example 9. Consider

rule Insert (ce->e->ce),

Insert (ce->e’->ce) ==> e = e’

rule Insert ([Nat]->Nat->[Nat]) <==> True

We build the critical pair consisting of the two constraint
sets Insert ([Nat]->Nat->[Nat]), Insert ([Nat]->e’->[Nat]),

Nat=e’ and Insert ([Nat]->e’->[Nat]). The first con-
straint reduces to Nat=e’ whereas Insert ([Nat]->e’->[Nat])

already represents the final constraint. The two constraints
are not equivalent but Insert ([Nat]->e’->[Nat]) is en-
tailed by Nat=e’ w.r.t the above CHRs. The additional com-
pletion requirements are satisfied, we add in rule Insert

([Nat]->e’->[Nat]) ==> Nat=e’. This yields a confluent
set of CHRs.

The described completion procedure is sound. We also
conjecture that the procedure is complete. That is, in case
of failure the program theory is not completable by a set of
propagation rules. Note that completion fails for the CHRs
in Example 7. Indeed, this set of CHRs can only be com-
pleted via an additional simplification rule. A detailed study
of the completion problem will be the subject of a forthcom-
ing paper.

2.3 Unambiguity
We require that programs must be unambiguous. Un-

ambiguous programs lead to difficulties in providing a well-
defined semantics (see e.g. [10]), and therefore, are ruled
out. For Haskell 98, there is a simple syntactic check which
ensures that programs are unambiguous. An expression e

of type ∀ᾱ.C ⇒ τ is unambiguous iff for any α ∈ ᾱ such
α ∈ fv(C) then α ∈ fv(τ). In the presence of additional
program properties specifiable via the rule keyword, the
above check for unambiguity is too restrictive. Therefore,
Chameleon implements an unambiguity check which sub-
sumes the ones found for Haskell 98 and functional depen-
dencies [12]. We refer to [21] for more details. The unam-
biguity condition (plus some other conditions) ensure that
we can provide a well-defined semantics [20] for Chameleon
programs.

2.4 Context
We refer to context as the set of constraints in type sig-

natures and CHRs. There are no syntactic restrictions on
contexts in Chameleon, in contrast to Haskell 98. For ex-
ample, consider the invalid Haskell 98 program

x :: C [a] => a

x = undefined

In Haskell 98, all constraints in type signatures must be of
the form C a. In Chameleon, the following would be valid.
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x :: C Bool => Bool

x = True

Clearly, to actually evaluate expression x, we require that
C Bool must be reducable to the True constraint w.r.t. the
current program theory.

3. ENCODING TYPE CLASSES
Chameleon does not require explicit declaration of type

classes to achieve overloading. Ad-hoc overloading is thus
simplified a lot. But type classes in Haskell not merely serve
as the basic mechanism for providing overloading as such,
they are also an important feature for structuring applica-
tions with respect to overloading polymorphism. A type
class in Haskell is an abstraction that bundles related op-
erations together into a higher-level entity, reminiscent of
a module signature. By organizing overloaded functions
within a class hierarchy, programs become more robust with
respect to changes or additions/removals of individual oper-
ations.

In this section we show (with one minor caveat) that us-
ing propagation rules, we can faithfully encode type classes.
That is, a Haskell typable program can be translated into
Chameleon such that typing is preserved.

3.1 Single Classes with
Monomorphic Methods

We start by considering single classes that do not contain
polymorphic methods. Consider a class declaration

class TC a where

m1 :: t1

...

mk :: tk

Grouping several methods into a single class implies that
whenever we define one of the methods, we also have to
define all others3. Likewise, whenever we use one of the
methods at some particular instance of a, a suitable imple-
mentation must not only exist for that particular method,
but for all in the class. Obviously, expressing the same in
Chameleon boils down to having appropriate propagation
rules that enforce consistent presence of methods.

The encoding of monomorphic class and instance declara-
tions is rather straight-forward4:

1. For each class declaration

class TC a where

m1 :: t1

...

mk :: tk

where t1,. . .,tk are types containing only a as free type
variables, we introduce a constraint synonym

constraint TC a = M1 t1, ..., Mk tk

It allows interpreting class constraints TC t as an ab-
breviation for the set of corresponding method con-
straints. For each method mi we introduce a propaga-
tion rule

3We ignore Haskell’s unfortunate defaulting to ⊥.
4We do not consider modules and related name spacing is-
sues.

rule Mi x ==> x = ti, TC a

The equational predicate ensures that a definition of
the corresponding method satisfies the type declara-
tion as specified in the class. The second predicate
(which expands according to the above constraint syn-
onym declaration) mimics the method’s membership in
class TC.

2. Each instance declaration

instance C => TC t where

m1 = e1

...

mk = ek

where e1,. . .,ek are expressions, is translated as fol-
lows:

overload m1 :: C => [t/a]t1

m1 = e1

...

overload mk :: C => [t/a]tk

mk = ek

We use the notation [t/a]ti to indicate substitution
of the instance type for the class variable in each method
type ti.

The encoding allows faithfully representing a legal Haskell
program in Chameleon, and interpreting any Haskell expres-
sion as a Chameleon expression, with typing preserved.

Example 10. Consider (a subset of) the standard class
Enum and a corresponding instance:

class Enum a where

pred, succ :: a -> a

toEnum :: Int -> a

instance Enum Int where

pred n = n - 1

succ n = n + 1

toEnum n = n

The translation yields:

constraint Enum a = Pred (a->a), Succ (a->a),

ToEnum (Int->a)

rule Pred x ==> x = a->a, Enum a

rule Succ x ==> x = a->a, Enum a

rule ToEnum x ==> x = Int->a, Enum a

overload pred :: Int -> Int

pred n = n - 1

overload succ :: Int -> Int

succ n = n + 1

overload toEnum :: Int -> Int

toEnum n = n

Given an expression

f = map succ

the Haskell type system would assign the type
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f :: Enum a => [a] -> [a]

Under the Chameleon encoding, the same definition would
be typed as

f :: Pred (a->a), Succ (a->a), ToEnum (Int->a) =>

[a] -> [a]

Note that in the encoding, the constraint abbreviation Enum

a expands to the same constraint as found in this context.
Section 3.7 describes how for user presentation a type pretty
printer could reverse-apply constraint abbreviations to ac-
tually display the shorter but equivalent type shown by a
Haskell system.

Example 11. Consider

class TC a where

f :: a -> Int

g :: Bool -> a

instance TC Bool where

f False = 0

f True = 1

Our translation yields:

constraint TC a = F (a->Int), G (Bool->a)

rule F x ==> x = a->Int, TC a

rule G x ==> x = Bool->a, TC a

overload f :: Bool->Int

f True = 1

f False = 0

Note that the program theory consisting of

rule F x ==> x = a->Int, TC a

rule G x ==> x = Bool->a, TC a

rule F (Bool->Int) <==> True

is non-confluent. F (Bool->Int) can be either reduced to
True or to G (Bool->Bool). Clearly, there was a problem
in the original Haskell program: we forgot to provide a def-
inition for the member function g.

We conclude that the additonal propagation rules enforce
that all uses of a method must conform to its declaration.
Confluence ensures that all method definitions belonging to
the same class must be provided.

3.2 Polymorphic Methods
We deliberately excluded polymorphic methods from the

discussion in the previous section. In Chameleon, there is
no problem in defining overloaded functions that are poly-
morphic in more than one variable. For example, we can
straight-forwardly overload the map function as follows:

overload map :: (a->b) -> [a] -> [b]

map = ...

However, to extend our type class encoding to methods poly-
morphic in more than the class variable alone, we have to
apply a slight trick, because we do not want to lift these
additional variables to class parameters.

Consider the following class:

class TC a where

m1 :: a

m2 :: a -> b -> b

Note that function m2 is parametric in b but overloaded on
a. We have to take this into account in our encoding of type
classes. That is, the class membership relation states the
following for m1:

∀a.(M1 a → ∀b.M2 (a → b → b)) (3.1)

But the propagation rule

rule M1 a ==> M2 (a->b->b)

represents the logically weaker statement

∀a.(M1 a → ∃b.M2 (a → b → b)) (3.2)

Fortunately, there exists a well-known technique to eliminate
universal quantifiers. We simply introduce a new skolem
constant for the universally quantified variable b. That is,
statement 3.1 can be equivalently formulated as

∀a.(M1 a → M2 (a → Erk → Erk)) (3.3)

where Erk is a new skolem constant. That formula corre-
sponds to the following propagation rule5:

rule M1 a ==> M2 (a->Erk->Erk)

In summary, we generalise the encoding as follows. Con-
sider a class of the form

class TC a where

m1 :: t1

...

mk :: tk

Let us assume that no type variable (apart from a) occurs in
more than one of the type signatures — this can be achieved
by trivial renaming. For each such type variable bi, we gen-
erate a fresh skolem type name Bi. Let ϕ be the correspond-
ing substitution mapping each bi to Bi. To encode the class
TC, we can then generate the abbreviation

constraint TC a = M1 t1’, ..., Mk tk’

where ti′ = ϕ ti. For each method mi we generate

rule Mi x ==> x = ti, TC a

Note that ti may not be skolemised in the latter rule. No
change is required to the translation of instance declarations.

Example 12. The class

class IntColl c where

empty :: c

fold :: (Int -> a -> a) -> a -> c -> a

is encoded as

constraint IntColl c = Empty c,

Fold ((Int->A->A)->A->c->A)

rule Empty x ==> x = c, IntColl c

rule Fold x ==> x = (Int->a->a)->a->c->a, IntColl c

Under these declarations, the application fold (+) will be
typed as Int->c->Int for some c and give rise to the con-
straint

5Note that rules may mention arbitrary type symbols.
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Fold ((Int->Int->Int)->Int->c->Int),

Empty c, Fold ((Int->A->A)->A->c->A)

Note that the second Fold constraint is essential to enforce
that fold is not merely defined for Int, but is really poly-
morphic. For that reason, it is important that the Fold rule
expands to

rule Fold x ==> x = (Int->a->a)->a->c->a,

Empty c, Fold ((Int->A->A)->A->c->A)

That is, we have a Fold constraint re-appearing on the
right-hand side. While this was redundant in the case of
monomorphic methods, it is necessary now to capture the
fact that fold is itself polymorphic.

Unfortunately, it is not possible to encode constrained
method types easily. In a class like

class TC a where

f :: Eq b => a -> b

the logical meaning of class membership of f is

F x → x = s ∧ ∀b.(Eq b → (a → b))

Since there now appears an implication under the quanti-
fier, the skolemisation trick no longer applies — we either
needed a higher-order propagation rule or an ad-hoc check
to implement that formula. See section 4.4 for a possible
approach to express higher-order rules.

3.3 Superclasses
A superclass constraint can be encoded by adding a simple

propagation rule. Consider:

class TC1 t1, ..., TCn tn => TC a where ...

A straight-forward encoding employs the rule

rule TC a ==> TC1 t1, ..., TCn tn

Note the use of constraint abbreviations on both sides of the
rule here.

How do we enforce that overloaded declarations are consis-
tent with the intended superclass hierarchy? A complete set
of instances corresponds to a confluent set of CHRs. Map-
ping a Haskell program that lacks a super instance will result
in a non-confluent program theory and thus yield a static er-
ror.

Example 13. Consider

class A a where f :: a -> Int

class A a => B a where g :: a -> Int

instance B Int where g = ...

Our translation yields the following Chameleon program:

constraint A a = F (a->Int)

constraint B a = G (a->Int)

rule F x ==> x = a->Int, A a -- 1

rule G x ==> x = a->Int, B a -- 2

rule B a ==> A a -- 3

overload g :: Int -> Int

g = ...

The overloaded definition for g corresponds to an additional
simplification rule

rule G (Int->Int) <==> True -- 4

Any application of g to an integer will yield the constraint
G (Int->Int) which can be either reduced directly to True

via rule 4 or, in several steps using the third rule first, to
F (Int->Int), with no further applicable rule. The pro-
gram’s theory is not confluent and the confluence checker
will reject it. If, on the other hand, a definition for f :: Int->Int

was included, then the second constraint could be reduced
to True as well and confluence would be established.

3.4 Constructor Classes
The most prominent example of a constructor class is

class Functor f where

fmap :: (a -> b) -> (f a -> f b)

According to this declaration, each instance t of the member
function fmap must be of the form (t1 -> t2) -> (T t1

-> T t2) for some appropriate types t1 and t2 and type
constructor T. Such side conditions can easily be expressed
in Chameleon via appropriate CHRs:

constraint Functor f = Fmap ((A->B) -> f A -> f B)

rule Fmap x ==> x = (a->b)->(f a->f b), Functor f

In addition, we also need to ensure kind correctness. Chameleon
follows the approach described in [11]. We omit the details.

3.5 Multi-Parameter Type Classes and
Functional Dependencies

Classes, respectively methods, with multiple type param-
eters can naturally be expressed in Chameleon. The same
holds for functional dependencies.

Example 14. Recall example 1 from section 2:

class Collects ce e | ce -> e where

empty :: ce

insert :: ce -> e -> ce

In Chameleon, we would express this as:

constraint Collects (ce,e) = Empty ce,

Insert (ce->e->ce)

rule Empty x ==> x = ce, Collects (ce,e)

rule Insert x ==> x = ce->e->ce, Collects (ce,e)

rule Collects (ce,e), Collects (ce,e’) ==> e = e’

We simply use tuple types to embed multiple parameters.
The last rule encodes the functional dependency ce e.

More generally, assume we want to express the functional
dependency a1...am b1...bn for a multi-parameter class
TC a1...am b1...bn c1...ck (i.e. ci are additional class
variables not mentioned in the particular functional depen-
dency). A single propagation rule is always sufficient:

rule TC (a1,...,am,b1,...,bn,c1,...,ck),

TC (a1,...,am,b1’,...,bn’,c1’,...,ck’)

==> b1 = b1’, ..., bn = bn’

Issues related to completion of program theories in case
we employ CHRs to model functional dependencies are dis-
cussed in Section 2.2.
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3.6 Expressiveness
We have seen that Chameleon’s overloading mechanism

almost completely subsumes type classes in their current
incarnations (with the exception of constrained methods).
What about the inverse? That is, given an arbitrary Chameleon
program, can we translate it into Haskell? The answer is no:
there is no way to map arbitrary propagation rules, not even
single-headed ones. And even overloaded definitions alone
cannot be mapped in general, at least not to Haskell 98 —
a direct encoding for overloaded declarations would be the
following:

1. For every overloaded identifier x generate

class X a where x :: a

2. For every overload declaration

overload x :: C => t; x = e

generate

instance C => X t where x = e

In general, neither the head X t nor the context C of this
instance will be valid Haskell 98, which restricts the syn-
tactic form of these phrases severely, in order to guarantee
decidability. A more general head is valid in GHC [16] with
its extensions, a more general context with its undecidable
instances switch only (however, decidability of type check-
ing in Chameleon should guarantee that this never actually
makes the GHC type checker loop for a translated program).
Allowing undecidable instances is also necessary to deal with
the extreme case of

overload x :: a

We conclude that overloading in Chameleon mostly sub-
sumes type classes in Haskell. The essence of type classes
are two restrictions on overloaded definitions:

1. Every definition must adhere to the type signature
given in the class.

2. Definitions at a particular type must always be given
for all methods of a class (and all its super-classes).

Propagation rules can be used to impose all necessary con-
straints to enforce (1) (with the exception constraints in
method types). Confluence of these propagation rules and
the simplification rules implied by overloaded definitions will
enforce (2). Furthermore, constraint abbreviations allow to
give names to concrete sets of constraints and thus provide
the necessary potential for abstraction over concrete sets of
methods, like with type classes. Consequently, type classes
might mostly be regarded as syntactic sugar in our frame-
work.

3.7 Simplification
For user presentation it is common to “simplify” con-

straints. An obvious simplification step is to remove equality
constraints by building most general unifiers. Simplification
becomes more tricky in case of superclass relationships spec-
ified via propagation rules.

Assume we find the following dependencies:

rule A x ==> B x

rule B x ==> C x

rule C x ==> D x

Then, constraints A t, D t and A t, B t, C t, D t are
equivalent for any type t. Clearly, we would like to achieve
the “best” representation of constraints when presenting the
result to the user.

In Chameleon this could be achieved by turning the above
propagation rules into multi-headed simplification rules:

rule A x, B x <==> A x

rule B x, C x <==> B x

rule C x, D x <==> C x

rule A x, C x <==> A x

rule A x, D x <==> A x

rule B x, D x <==> B x

Note that the last three rules are necessary to ensure con-
fluence. These rules could be generated by an automatic
method, similar to the method discussed in section 2.2. Like-
wise, we could turn constraint abbreviations into simplifica-
tion rules. In general, we assume that these rules are only
applied for user interaction. Such a mechanism has not been
implemented yet.

4. BEYOND TYPE CLASSES
We present an alternative treatment of constructor classes.

We also show that in Chameleon we can overcome some of
the context restrictions found in Haskell.

4.1 Alternative Constructor Classes
Note that the propagation rule imposed on fmap in Sec-

tion 3.4 is crucial.

Example 15. Consider

cmap f g = (fmap g) . (fmap f)

Without rule Fmap a ==> a = (b->c)->(f b->f c) we find
that

cmap :: Fmap (a’->a->b), Fmap (b’->b->c) =>

a’ -> b’ -> a -> c

Note that the bound type variable b in Fmap (a’->a->b)

does not appear in the type component. Therefore, cmap’s
type is ambiguous. In contrast, the above CHR enforces

cmap :: Fmap ((a->b)->(f a->f b)),

Fmap ((b->c)->(f b->f c))

=> (a->b)->((b->c)->(f a->f c))

Now, cmap’s type is unambiguous.
Maybe surprisingly, the sole purpose of the functor class

seems to circumvent ambiguity problems. In fact, this is also
the motivation provided in [11]. The concept of constructor
classes simply allows us to enforce similar side conditions
as the above CHR. Given the ability to formulate almost
arbitrary side conditions in Chameleon, we present an alter-
native treatment of “constructor classes”. We restrict our
attention to the Functor class.

We postulate the following four conditions on fmap, each
of which can be encoded via CHRs:
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1. fmap should transform one function into another func-
tion.

rule Fmap a ==> a = (b->c)->(fb->fc)

2. The input type b of the input function and the output
type fc of the transformed function uniquely deter-
mine c (which is the output type of the input function)
and fb (which is the input type of the transformed
function).

rule Fmap ((b->c)->(fb->fc)),

Fmap ((b->c’)->(fb’->fc))

==> b=b’, fb=fb’

3. Similarly, c and fb uniquely determine b and fc.

rule Fmap ((b->c)->(fb->fc)),

Fmap ((b’->c)->(fb->fc’))

==> b=b’, fc=fc’

4. The transformed function uniquely determines the in-
put function.

rule Fmap ((b->c)->(fb->fc)),

Fmap ((b’->c’)->(fb->fc))

==> b=b’, c=c’

Note that the last three conditions essentially state some
functional dependencies. Indeed, the above conditions could
have been coded up by functional dependencies:

class Fmap a b fa fb | a fb -> b fa,

b fa -> a fb,

fa fb -> a b where

fmap :: (a->b)->(fa -> fb)

The important insight is that the four CHRs specified above
are sufficient to avoid the ambiguity problem in the function
definition of cmap. Recall example 15. Now, we find that

cmap :: Fmap ((a2->a3)->(a->b)),

Fmap ((b2->b3)->(b->c))

=> (a2->a3)->(b2->b3)->a->c

Note that type variable b is not mentioned in the type com-
ponent. However, b is functionally defined by b2 and c.
Therefore, cmap’s type is unambiguous.

This alternative approach towards functors allows us to
type some interesting programs. Assume that in addition to
functors we would like to support cofunctors. We represent
cofunctors in Chameleon via an overloaded function comap.
Similarly to the four conditions imposed on fmap, we impose
four conditions on comap.

Example 16. Below follows the Chameleon code.

overload fmap :: (b->c)->(a->b)->(a->c)

fmap f g = f . g

overload comap :: (a->b)->(b->c)->(a->c)

comap f g = g . f

rule Comap a ==> a = (b->c)->(fc->fb)

rule Comap ((b->c)->(fc->fb)),

Comap ((b->c’)->(fc->fb’))

==> b=b’, fb=fb’

rule Comap ((b->c)->(fc->fb)),

Comap ((b’->c)->(fc’->fb))

==> b=b’, fc=fc’

rule Comap ((b->c)->(fc->fb)),

Comap ((b’->c’)->(fc->fb))

==> b=b’, c=c’

Note that it is not straightforward anymore to switch back to
the common presentation of constructor classes as found in
Haskell. The overloaded definition of fmap on type (b->c)->(a->b)->(a->
corresponds to an instance Functor (->) a. However, we
encounter problems if we try to represent comap on type
(a->b)->(b->c)->(a->c) using constructor classes. Assume
we define cofunctors as follows:

class Cofunctor f where

comap :: (a->b)->(f b->f a)

Then we would require for abstraction in the type language.
The desired, but not valid, class instance would be Cofunctor
(\x -> (->) x c). It is certainly an interesting problem to
investigate how to extend Haskell constructor classes while
retaining decidable inference. Note that allowing for unre-
stricted abstraction in the type language immediately leads
to undecidable type inference. In such a situation, the typing
problem can be reduced to higher-order unification, which
is undecidable. In our alternative formulation of construc-
tor classes we simply avoid such problems altogether. We
believe that more variations of “constructor classes” are pos-
sible. We leave this topic for future work.

4.2 Generalised Superclasses
When designing more complex class hierarchies one often

reaches the limits of what is legal Haskell, even with respect
to common extensions. Okasaki reports that in the design
of the Edison library [17] he encountered examples like the
following:

class (Eq k, Functor (m k)) => AssocX m k

class (UniqueHash a, CollX c Int)

=> CollX (HashColl c) a

Both these examples are not valid Haskell. Apart from the
fact that they use multiple parameter type classes, the con-
texts appearing in these class declarations are not in “head
form”, i.e. the class predicates are applied to something else
than type templates of the form T a1...an.

Such examples are no problem in the more general setting
described here. They simply stand for the perfectly valid
propagation rules

rule AssocX (m,k) ==> Eq k, Functor (m k)

rule CollX (HashColl c,a) ==> UniqueHash a,

CollX (c,Int)

4.3 Superclasses with Universal Quantification
More involved are problems requiring universal quantifi-

cation in superclass contexts. These arise when a class is
“higher-kinded” than one of its superclasses. The following
example is taken from Peyton Jones et.al. [13]. Consider

class (forall s. Monad (m s)) => StateMonad m

The idea is that the superclass context indicates that m s

should be a monad for any type s. That is, the following

9



should hold:

∀m.(StateMonad m → ∀s.Monad (m s))

Note that we have universal quantification on the right-hand
side of the → symbol. Again, skolemization does the job —
the above statement is equivalent to

∀m.(StateMonad m → Monad (m Erk))

where we have replaced the universal quantification over s

by a new skolem constant Erk. The Chameleon formulation
is

rule StateMonad m ==> Monad (m Erk)

Consider we would like to define a class for sequences like
in Okasaki’s paper, but want to require any instance to sup-
port equality. The class declaration had to look like this:

class (forall a . Eq (s a)) => Sequence s

Of course, this class constraint is overly restrictive, since we
usually can only define equality on a container, if we have
equality on its elements. We thus refine the constraint to:

class (forall a . (Eq a => Eq (s a))) => Sequence s

This expresses that any instance S T of a sequence type must
support equality, as long as T does. In other words, there
has to be an instance of the form:

instance Eq a => Eq (S a)

For any constructor S that is an instance of Sequence. A
more general instance

instance Eq (S a)

would also be valid, of course.
We can express that directly in our framework using a

simple propagation rule. Logically, the class declaration rep-
resents the implication

∀s.Sequence s → (∀a.Eq a → Eq (s a))

which is equivalent to

∀s, a.Sequence s → (Eq a → Eq (s a))

which again is equivalent to

∀s, a.Sequence s ∧ Eq a → Eq (s a)

We can directly turn this last form into a propagation rule:

rule Sequence s, Eq a ==> Eq (s a)

Interestingly, the encoding of the latter example is actu-
ally simpler than that of the StateMonad class above, al-
though it looks more complicated in Haskell. The reason
is that we directly support multi-headed propagation rules,
for which no equivalent exists in Haskell.

4.4 Instances with Universal Quantification
Hinze and Peyton Jones [7] give another example, where

universal quantification appears in an instance context. They
have a class similar to

class Binary a where bin :: t -> [Bool]

and a higher-order datatype representing generalised rose
trees based on an arbitrary sequence type:

data GRose s a = GBranch a (s (GRose s a))

An instance declaration for Binary on this type requires
universal quantification:

instance (Binary a,

forall b . Binary b => Binary (f b))

=> Binary (GRose f a)

We cannot directly express this in our framework either,
because it corresponds to a higher-order simplification rule:

rule Bin (GRose s a->[Bool]) <==>

Bin a, (Bin (s b) <==> Bin b)

The intuition is that application of the above rule brings a
new rule, rule Bin (s b) <==> Bin b, into scope.

Higher-order CHRs have not been investigated so far. How-
ever, it is possible to simulate such higher-order CHRs via
some multi-headed simplification rules. Consider

rule Bin (GRose s a -> [Bool]) <==> Bin a, Tok s

rule Tok s, Bin (s b) <==> Tok s, Bin b

These two rules achieve the same operational effect as the
higher-order CHR above. Note that we had to invent a new
constraint Tok s. To utilize that encoding we needed to
extend the Chameleon typing rules to allow forgetting these
special constraints, such that the inference algorithm was
allowed to clean them up at appropriate points. We leave
thorough investigation of these ideas to future research.

5. TYPE PROGRAMMING
The ability to specify arbitrary propagation rules allows

the user to “customise” type inference to her needs. As
a small example of the type-level programming possible in
Chameleon, we look at operations polymorphic in the arity
of tuples. In order to enable inductive definitions we assume
that the base language is equipped with extensible tuples,
i.e. an n-ary tuple type (t1, · · · , tn) is actually equivalent to
the type (t1, · · · (tn, ()) · · · ) of nested pairs, terminated by
the unit type (). The more general concept of extensible
records has been proposed in various flavours [?, ?]. Inter-
estingly enough, some approaches use constraints to enforce
wellformedness [?], but we will not explore this here.

An interesting example is the generic uncurry function:

overload uncurry :: f->()->f

uncurry f () = f

overload uncurry :: Uncurry (f’->t->r) =>

((x->f’)->(x,t)->r)

uncurry f (x,t) = uncurry (f x) t

Given these instances, we can turn given functions into un-
curried form and apply them to an appropriate argument tu-
ple. Assume h :: Int -> Int -> Bool -> String. Then
we can apply

uncurry h (2,3,True)

But this is not good enough. Consider we want to abstract
over the concrete function:

fun f = uncurry f (2,3,True)

Then the type checker can only infer

fun :: Uncurry(f->(Int,Int,Bool)->a) => f -> a
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although we would like to see

fun :: (Int->Int->Bool->a) -> a

The open world assumption underlying overloading does not
allow the type checker to infer this type from the constraint
given above. But we have propagation rules at our hands to
force it to!

rule Uncurry x ==> x = f->t->r

rule Uncurry (f->()->f’) ==> f = f’

rule Uncurry (f->(x,t)->r) ==> f = x->g

With these additional rules the type checker is able to infer
the desired type. The explicit CHRs and the ones induced by
the definitions of uncurry are sufficient to derive the number
and types of arguments for the function f from the type of
the argument tuple. The type of the whole expression is then
determined by f’s result type. Confluence will ensure that
no later overloaded definition may conflict with the typing
restrictions imposed by the propagation rules.

On the other hand, if we only pass an argument function
to uncurry, without applying the result to a tuple, type
inference can still not determine a concrete type for the ap-
plication, even if the function’s type is known already:

fun2 = uncurry h

The inferred type will just be

fun2 :: Uncurry ((Int->Int->Bool->String)->a) => a

And rightly so! There is no way of telling how many argu-
ments shall be uncurried before seeing the actual tuple the
function shall be applied to. The inferred type thus allows
any choice that is consistent with the type of h. Because of
polymorphism, it even allows different instantiations:

exp2 = fun2 (2,3)

exp3 = fun2 (2,3,True)

While exp3 obviously is a string, exp2 has the function type
Bool->String. We might even apply fun2 to () and get
back the original h.6

The reverse operation, curry, is not much more difficult:

overload curry :: (()->r)->r

curry f = f ()

overload curry :: (Curry ((t->r)->g)) =>

((x,t)->r)->(x->g)

curry f = \x -> curry (\t -> f (x,t))

Again we need additional propagation rules:

rule Curry x ==> x = (t->r)->f

rule Curry ((()->r)->r’) ==> r = r’

rule Curry (((x,t)->r)->f) ==> f = x->g

Alternatively, we could utilize the equivalence

Curry ((t->r)->f) ⇐⇒ Uncurry (f->(t->r))

and replace the three rules by just

rule Curry ((t->r)->f) ==> Uncurry (f->(t->r))

for the same effect.
A similar definition of the curry and uncurry functions

could have been given in Haskell, utilizing multi-parameter
type classes with functional dependencies.

arShortly mention other nice examples.

6In the system of extensible tuples there is also syntax for
1-tuples, namely (t,()).

6. TYPE PROGRAMMING
The ability to specify arbitrary propagation rules allows

the user to “customise” type inference to her needs. But
CHRs as available in Chameleon are actually much more
powerful than this: they allow quite sophisticated forms of
type-level programming.

We are interested in specifying the syntax and semantics
of a simple functional language. A standard approach would
introduce the following algebraic data types:

data Type = TypeInt | TypePair Type Type
| TypeFunc Type Type

data Exp = ExpVar Int | ExpConst Int
| ExpPair Exp Exp | ExpPi1 Exp | ExpPi2 Exp
| ExpAbs Int Exp | ExpApp Exp Exp

Note that we use numbers to encode variables.
An interpreter is quickly written for our simple language:

data Value = ValConst Int | ValPair Value Value
| ValFunc (Value->Value)

type Env = [(Int,Value)]

lookup :: Env -> Int -> Value
lookup ((var,val):env) x

| var == x = val
| otherwise = lookup env x

eval :: Env -> Exp -> Value
eval e (ExpVar v) = lookup e v
eval e (ExpConst n) = ValConst n
eval e (ExpPair x y) = ValPair (eval e x) (eval e y)
eval e (ExpPi1 x) = case (eval e x) of

ValPair y z -> y
eval e (ExpPi2 x) = case (eval e x) of

ValPair y z -> z
eval e (ExpAbs x y) = ValFunc (\z -> eval ((x,z):e) y)
eval e (ExpApp x y) = case (eval e x) of

ValFunc f -> f (eval e y)

Note that the above interpreter is written in indirect style.
We use a universal data type Value to represent values of
any type by a value of one (universal) type. The insertion
of tags such as ValConst and ValFunc is necessary to make
our interpreter type check.

It has been observed that not all tags are necessary at run-
time to ensure the correct evaluation of interpreted object
programs. The removal of unnecessary tags has recently
attracted some attention [?, ?].

6.1 Direct-Style Interpreter
In Chameleon it is possible to provide a direct style for-

mulation. We introduce singleton types to perform some
compile-time manipulations of values.

-- language of object expressions
data ExpVar x = ExpVar x
data ExpConst n = ExpConst n
data ExpPair a1 a2 = ExpPair a1 a2
data ExpPi1 a = ExpPi1 a
data ExpPi2 a = ExpPi2 a
data ExpAbs x a = ExpAbs x a
data ExpApp a1 a2 = ExpApp a1 a2

-- result of type-level computations
data T = T
data F = F

-- we use numbers to model variables
data Zero = Zero
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data Succ n = Succ n

overload eq :: Zero -> Zero -> T
eq Zero Zero = T

overload eq :: Eq (a->b->c) => Succ a -> Succ b -> c
eq (Succ a) (Succ b) = eq a b

overload eq :: Zero -> Succ a -> F
eq Zero (Succ a) = F

overload eq :: Succ a -> Zero -> F
eq (Succ a) Zero = F

-- we use lists for the environment
data Nil = Nil
data Cons a b = Cons a b

We define a type-safe lookup function:

overload lookup ::
(Lookup’ (Cons (x1,v) e -> x2 -> b -> v’),
Eq (x1->x2->b)) => Cons (x1,v) e -> x2 -> v’

lookup (Cons (x1,v) e) x2 =
lookup’ (Cons (x1,v) e) x2 (eq x1 x2)

overload lookup’ :: Cons (x1,v) e) -> x2 -> T -> v
lookup’ (Cons (_,v) e) _ T = v

overload lookup’ :: Lookup (e->x2->v’) =>
Cons (x1,v) e -> x2 -> F -> v’

lookup’ (Cons (x1,v) e) x2 F = lookup e x2

Note that we use the auxilliary function lookup’ to mimic
the behaviour of the guard clauses in function lookup.

We define our interpreter in direct style as follows:

overload eval :: (Lookup (e->x->v))
=> e -> ExpVar x -> v

eval e (ExpVar x) = lookup e x
overload eval :: e -> ExpConst n -> n

eval e (ExpConst n) = n
overload eval :: (Eval (e->a1->v1), Eval (e->a2->v2))

=> e -> ExpPair a1 a2 -> (v1,v2)
eval e (ExpPair a1 a2) = (eval e a1, eval e a2)

overload eval :: (Eval (e->a->(v1,v2)))
=> e -> ExpPi1 a -> v1

eval e (ExpPi1 a) = fst (eval e a)
overload eval :: (Eval (e->a->(v1,v2)))

=> e -> ExpPi2 a -> v2
eval e (ExpPi2 a) = snd (eval e a)

overload eval :: (Eval ((Cons (x,v1) e)->a->v2))
=> e -> ExpAbs x a -> (v1->v2)

eval e (ExpAbs x a) = \v1 -> eval (Cons (x,v1) e) a
overload eval :: (Eval (e->a1->(v2->v1)), Eval (e->a2->v2))

=> e -> ExpApp a1 a2 -> v1
eval e (ExpApp a1 a2) = (eval e a1) (eval e a2)

To make this open set of overloaded definitions behave as if
it were closed, we have to add propagation rules:

rule Eval (e->(ExpVar x)->v)
==> Lookup (e->x->v)

rule Eval (e->(ExpConst n)->v)
==> v = Int

rule Eval (e->(ExpPair a1 a2)->v)
==> v = (v1,v2), Eval (e->a1->v1), Eval (e->a2->v2)

rule Eval (e->(ExpPi1 a)->v1)
==> Eval (e->a->(v1,v2))

rule Eval (e->(ExpPi1 a)->v2)
==> Eval (e->a->(v1,v2))

rule Eval (e->(ExpAbs x a)->v)
==> v = v1->v2, Eval ((Cons (x,v1) e)->a->v2)

rule Eval (e->(ExpApp a1 a2)->v1)
==> Eval (e->a1->(v2->v1)), Eval (e->a2->v2)

Note that we have one rule per instance. This is not possible
with functional dependencies, which can only be defined on

a per-class basis. In particular, if we tried to write some-
thing similar in Haskell using a multi-parameter type class
Eval e a v with the functional dependency e a v, then
the definition for ExpAbs would violate that dependency.

Now consider the expression

exp :: ExpApp (ExpConst Int) (ExpConst Int)

exp = ExpApp (ExpConst 1) (ExpConst 2)

res = eval Nil exp

We can already statically determine that expression res can-
not be evaluated. The required instance constraint Eval

(Nil -> ExpCons Int -> (a->b)) cannot be reduced to True.

6.2 Type Inference
As an additional excercise we write a type inference algo-

rithm.

-- language of object types
data TypeInt = TypeInt
data TypePair t1 t2 = TypePair t1 t2
data TypeFunc t1 t2 = TypeFunc t1 t2

We can write an inferencer as a set of CHRs. The con-
straint Infer (env -> exp -> typ) computes expression’s
exp type typ under the environment env.

overload infer :: (Lookup (e->x->t))
=> e -> ExpVar x -> t

infer e (ExpVar x) = reify
overload infer :: e -> ExpConst Int -> TypeInt

infer e (ExpConst n) = reify
overload infer :: (Infer (e->a1->t1), Infer (e->a2->t2))

=> e -> ExpPair a1 a2 -> TypePair t1 t2
infer e (ExpPair a1 a2) = reify

overload infer :: (Infer (e->a->TypePair t1 t2))
=> e -> ExpPi1 a -> t1

infer e (ExpPi1 a) = reify
overload infer :: (Infer (e->a->TypePair t1 t2))

=> e -> ExpPi2 a -> t2
infer e (ExpPi2 a) = reify

overload infer :: (Infer ((Cons (x,t1) e)->a->t2))
=> e -> ExpAbs x a -> TypeFunc t1 t2

infer e (ExpAbs x a) = reify
overload infer :: (Infer (e->a1->TypeFunc t2 t),

Infer (e->a2->t2))
=> e -> ExpApp a1 a2 -> t

infer e (ExpApp a1 a2) = reify

Note the “fake” method implementations. They use the
overloaded function

overload reify :: TypeInt
reify = TypeInt

overload reify :: (Reify t1, Reify t2) => TypePair t1 t2
reify = TypePair reify reify

overload reify :: (Reify t1, Reify t2) => TypeFunc t1 t2
reify = TypeFunc reify reify

All inference happens on the type level. It is not directly
possible to implement it on the value level without going
through the hassle of implementing unification (because we
have to guess when typing abstractions). Using the type-
level programming facilities, this is provided for free. We can
than reify the singleton type inferred by the constraints to
get back an actual value that might be printed, for example.

Again, we can use propagation rules to “close” the defini-
tion w.r.t. the expression types we use in order to actually
trigger the static computation:
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rule Infer (e->(ExpVar x)->t)
==> Lookup (e->x->t)

rule Infer (e->(ExpConst n)->t)
==> t = TypeInt

rule Infer (e->(ExpPair a1 a2)->t)
==> t = TypePair t1 t2,

Infer (e->a1->t1), Infer (e->a2->t2)
rule Infer (e->(ExpPi1 a)->t1)
==> Infer (e->a->(TypePair t1 t2))

rule Infer (e->(ExpPi2 a)->t2)
==> Infer (e->a->(TypePair t1 t2))

rule Infer (e->(ExpAbs x a)->t)
==> t = t1->t2, Infer ((Cons (x,t1) e)->a->t2)

rule Infer (e->(ExpApp a1 a2)->t)
==> Infer (e->a1->(TypeFunc t2 t)), Infer (e->a2->t2)

Note again that we could not express this using functional
dependencies — the ExpApp case is not functional.

We can combine evaluation and inference by the following
definition:

exec :: (Eval (env->exp->val), Infer (tenv->exp->typ))
=> tenv -> env -> exp -> (typ, val)

exec tenv env exp = (infer tenv exp, eval env exp)

As a further refinement, we could also formalize that the
value environment env and type environment tenv “agree”.

arI wonder, isn’t Infer completely redundant? We

could as well define:

overload reify :: Int -> TypeInt
reify _ = TypeInt

overload reify :: (Reify (t1->t1’), Reify (t2->t2’)) =>
(t1,t2) -> TypePair t1’ t2’

reify _ = TypePair (reify undefined) (reify undefined)
overload reify :: (Reify (t1->t1’), Reify (t2->t2’)) =>

(t1->t2) -> TypeFunc t1’ t2’
reify _ = TypeFunc (reify undefined) (reify undefined)

-- and now:
exec :: Eval (env->exp->val) => env -> exp -> (typ, val)
exec env exp = (reify v, v) where v = eval env exp

arI.e., type inference is already built-in into eval-

uation. Or am I floating?

7. CONCLUSION
One of the main exercises of the present paper is to es-

tablish a connection between the form of overloading found
in Haskell and the CHR-based overloading in Chameleon.
Chameleon allows us to go “beyond” type classes as found
in Haskell. Many desired type class extensions can now sim-
ply be programmed via some set of CHRs. In Section 4, we
discussed some novel features such as universal quantifica-
tion in context. We also presented an alternative treatment
of “constructor classes” which might be worthwhile to pur-
sue further.

The ability of type programming in Haskell has already
been recognized for a while, see e.g. [5]. In some recent
work [4], Gasbichler, Neubauer, Sperber and Thiemann sug-
gest to incorporate a functional-logic language on the type
level. Indeed, as shown in [15], Haskell instance declara-
tion with functional dependencies can most often be refor-
mulated as functional programs. Certainly, it might be a
matter of taste which kind of language is preferable on the
level of types. The logic/constraint programming style pro-
vided by CHRs might not necessarily suit the taste of ev-
ery functional programmer. However, one of the benefits of
the CHR language is that some concise results are available

which ensure decidable type inference [21] and a well-defined
semantics [20] for Chameleon. Compare this to Augusts-
son’s [1] dependently typed language Cayenne which comes
with great expressiveness but gives no guarantees regarding
decidable type inference. We even believe that a logic lan-
guage such as CHRs seems to have some advantages when
designing some complex superclass relations as shown in Sec-
tion 4.3. We should also mention that a first-order functional
language can always be easily translated into CHRs. There-
fore, the programmer might not even get in touch with the
underlying type level language. An interesting topic we leave
for future work is to employ the power of an expressive type
language to capture some program/data invariants [24].
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